The electric field of an electron in a electron-hole plasma with degenerate electrons. Formation of a superconductivity state.

S. P. Sadykova^{1,} A. A. Rukhadze²

¹Forschungszentrum Julich (Jlm.), Juelich, GERMANY ²Prokhorov General Physics Institute, RAS, Vavilov Str. 38., Moscow, 119991, RUSSIA

We consider the conditions for formation of a superconductivity state either in a semiconductor or in a electron-hole plasma with the degenerate electrons due to the attractive forces between the electrons as a result of the exchange effects through the electron-hole sound wave by analogy to the phonon waves in a solid state. One of the major unsolved problems of the superconductivity theory is determination of the static potential of a point electron. We have determined the view of an interaction potential between two electrons in a degenerate electron-hole plasma (1) with non-degenerate holes. The potential appears to be attractive at distances large than the Debye radius and decreases as $1/r^3$, See Fig.(1). We discuss the conditions at which the bound electron state - Cooper Pair in a such field can be formed. The interaction potential of two electrons α and β in a electron-hole plasma can be described by the following equation [1]:

$$U(r) = \int e^{i\vec{k}\vec{r}} U(\vec{k}) d\vec{k}, \ U(k) = \frac{e_{\alpha}e_{\beta}}{2\pi^2} \frac{1}{k^2 \varepsilon'(kV_{\alpha},k)},$$
(1)

where [2]

$$k^{2} \varepsilon^{l} (kV_{\alpha}, k) = k^{2} + \frac{3 \omega_{L^{-}}^{2}}{V_{F^{-}}^{2}} - \frac{\omega_{L^{+}}^{2}}{V_{\alpha}^{2}} + \iota\beta, \ \beta = 3 \pi \frac{V_{\alpha} \omega_{L^{-}}^{2}}{V_{F^{-}}^{3}},$$
(2)

here V_{α} is the speed of a test electron with the charge e_{α} producing the potential ϕ_{α} at a point r=0 where the charge e_{β} is located; V_{F-} - the speed of a weakly damped electron-hole sound wave, $\omega_{L+,L-}$ - the hole and electron Langmuir frequencies.

REFERENCES

- [1] E. M. Livshits , L.P. Pitaevskii , "Physical Kinetics", Pergamon Press, London, 452 pp. (1981).
- [2] A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, "*Principles of Plasma Electrodynamics*", Springer Verlag, Heidelberg, pp. 167-170 (1984).