Stopping power of electron gas

1 Al-Farabi Kazakh National University, Almaty, KAZAKHSTAN
2Universitat Politècnica de València, Valencia, SPAIN

The polarizational stopping power of heavy ions in fully ionized plasmas is described by the Lindhard formula [1]:

\[
\left[\frac{dE}{dx} \right]_{\text{pol}} = 2 \left(\frac{Z_p e^2}{\pi v^2} \right) \int_0^\infty \int_0^k \omega^2 \left(-\text{Im} \left[\frac{\varepsilon^{-1}(k, \omega)}{\omega} \right] \right) d\omega,
\]

whose high-velocity asymptotic form was found by Bohr, Bethe, and Larkin [2]:

\[
\left[\frac{dE}{dx} \right]_{\text{pol}} \approx \left(\frac{Z_p e^2}{v} \right)^2 \ln \left(\frac{2m_e v^2}{\hbar \omega_p} \right).
\]

The plasma inverse dielectric function (IDF), \(\varepsilon^{-1}(k, \omega) \), was determined in [3] within the moment approach [4], complemented by some physical observations in terms of two characteristic frequencies \(\omega_1 \) and \(\omega_2 \), which are the ratios of the frequency power moments of the IDF imaginary part, in the following form:

\[
\varepsilon^{-1}(k, \omega) = 1 + \frac{\omega_1^2 \left(\sqrt{2} \omega_1 \omega + i \omega_2^2 \right)}{\sqrt{2} \omega_1 \omega (\omega^2 - \omega_2^2) + i \omega_2^2 \left(\omega^2 - \omega_1^2 \right)}.
\]

The frequencies \(\omega_1 \) and \(\omega_2 \) can be rigorously evaluated using the static structure factor (SSF) of the system. Nevertheless, here we employ the following interpolating expressions [5,6]:

\[
\omega_1^2 = \omega_1^2(k) = \omega_p^2 \left(1 + k^2 k_0^2 + k^4 k_s^4 \right), \quad \omega_2^2 = \omega_2^2(k) = \omega_p^2 \left(1 + \left(\frac{v_m^2 k^2}{\omega_p^2} - \frac{v_m^2 k_s^2}{\omega_p^2} \right) \right).
\]

The interpolation and fitting parameters introduced are chosen as follows:

\[
v_{\text{int}}^2 = -4 \frac{\Gamma^{3/2}}{15} \frac{0.9052}{\beta m_e} \left(\frac{0.27243}{1 + \Gamma} \right), \quad \Gamma = \frac{\beta e^2}{a}, \quad k_s^2 = 12 r_s / a_s^4, \quad r_s = a / a_s,
\]

\(a \) and \(a_s \) are the Wigner-Seitz and Bohr radii, respectively; \(\beta = 1 / (k_B T) \), \(k_D^{-1} \) is the Debye radius, \(k_s \) stands for the Boltzmann constant with \(T \) being the plasma temperature.

The numerical results obtained for the energy losses of heavy ions moving in an electron gas are found in good agreement with the PIC simulation data [7].

REFERENCES