Quantum fluid description of non-ideal dense plasmas

Zh.A. Moldabekov^{1,2}, M. Bonitz¹, T.S. Ramazanov²

¹ Institut für Theoretische Physik & Astrophysik, Christian-Albrechts-Universität, Kiel, Germany ² Institute of Experimental and Thepretical Physics, Al Farabi Kazakh National University, Almaty, Kazakhstan

A large scale simulation of quantum plasmas with correlated electrons is challenging and, currently, a formidable task. *Ab initio* methods such as Quantum Monte-Carlo and Kohn-Sham density functional theory (DFT) are severely limited by the number of electrons and ions which can be simulated [1]. Hence, the orbital-free formulation of DFT has undergone rapid development in recent years [2]. However, the OFDFT is limited to the static case. Therefore, in this work, we present our recent result on the development of quantum hydrodynamics (QHD) of correlated electrons in dense plasmas; which e.g., can be used for the description of the dynamics of the electrons around a mean distribution obtained from the OFDFT and, thereby, can be a reliable tool for a large scale simulation of a quantum plasma dynamics [3].

We have derived the closure relations which allow to go beyond of previously used QHD models. The main features of the developed QHD theory are the following: it can be used at finite temperatures, the agreement with the random phase approximation is guarantied in the non-interacting limit, the effect of correlations is taken into account via the local filed corrections, and can be used for the weakly non-uniform case. On the basis of the obtained closure relations, previous results on the fluid description of the non-interacting quantum electrons have been revised and, in part, improved. The non-ideality effect is discussed for both static and dynamic cases employing local field corrections [4-7]. Finally, the extension to the case of a quantum plasma in an external magnetic field is presented.

REFERENCES:

[1] F. Graziani, M.P. Desjarlais, R. Redmer, and S.B. Tricke, "Frontiers and Challenges in Warm Dense Matter", (Springer, 2014);

[2]T. Sjostrom and J. Daligault, "Nonlocal orbital-free noninteracting free-energy functional for warm dense matter" Phys. Rev. B **88**, 195103 (2013); V. Karasiev, T. Sjostrom and S. B. Trickey, "Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations" Phys. Rev. B **86**, 115101 (2012).

[3] Zh.A. Moldabekov, M. Bonitz, T.S. Ramazanov, "Theoretical foundations of quantum hydrodynamics for plasmas" Phys. Plasmas **25**, 031903 (2018)

[4] H. Reinholz, R. Redmer, G. Roepke, and A. Wierling, "Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma" Phys. Rev. E **62**, 5648 (2000).

[5] Z. Moldabekov et al., "Ion potential in warm dense matter: wake effects due to streaming degenerate electrons" Phys. Rev. E **91**, 023102 (2015); "Notes on anomalous quantum wake effects", Contrib. Plasma. Phys. **56**, 442 (2016);

[6] Zh.A. Moldabekov, S. Groth, T. Dornheim, M. Bonitz, T.S. Ramazanov, "*Ion potential in non-ideal dense quantum plasmas*" Contrib. Plasma Phys. **57**, 532 (2017);

[7] Zh.A. Moldabekov, S. Groth, T. Dornheim, H. Kählert, M. Bonitz, and T.S. Ramazanov, "*Structural properties of strongly coupled ions in quantum plasmas*", submitted for publication (2018).